Support Vector Random Fields for Spatial Classification
نویسندگان
چکیده
In this paper we propose Support Vector Random Fields (SVRFs), an extension of Support Vector Machines (SVMs) that explicitly models spatial correlations in multi-dimensional data. SVRFs are derived as Conditional Random Fields that take advantage of the generalization properties of SVMs. We also propose improvements to computing posterior probability distributions from SVMs, and present a local-consistency potential measure that encourages spatial continuity. SVRFs can be efficiently trained, converge quickly during inference, and can be trivially augmented with kernel functions. SVRFs are more robust to class imbalance than Discriminative Random Fields (DRFs), and are more accurate near edges. Our results on synthetic data and a real-world tumor detection task show the superiority of SVRFs over both SVMs and DRFs.
منابع مشابه
Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کاملHyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملAutomatic classification of highly related Malate Dehydrogenase and L-Lactate Dehydrogenase based on 3D-pattern of active sites
Accurate protein function prediction is an important subject in bioinformatics, especially wheresequentially and structurally similar proteins have different functions. Malate dehydrogenaseand L-lactate dehydrogenase are two evolutionary related enzymes, which exist in a widevariety of organisms. These enzymes are sequentially and structurally similar and sharecommon active site residues, spati...
متن کاملTitle of Thesis: Modeling Spatial Correlations for Effective Discriminative Clas- Sifiers Modeling Spatial Correlations for Effective Discriminative Classifiers
Classification — i.e. categorizing data instances into pre-defined categories — is an interesting and challenging task. Many real world problems involve classification, in domains such as medical informatics, image analysis, and text tagging. We consider the challenge of learning a classifier from data. This is especially challenging when data instances are correlated. Here, we focus on learnin...
متن کامل